If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15y^2=45y
We move all terms to the left:
15y^2-(45y)=0
a = 15; b = -45; c = 0;
Δ = b2-4ac
Δ = -452-4·15·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-45}{2*15}=\frac{0}{30} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+45}{2*15}=\frac{90}{30} =3 $
| (5+x)=5 | | 4(7-3)-6(y+1)=4(3y+4)-2(8+6y) | | 16+3x=x-12 | | 4x+8=2x=12 | | 5k+1=31 | | -3r+1=-2 | | 8(x–5)=2 | | 9j+4=5j-1 | | 3d+27=4.5d | | 3d+27=4.5d+0 | | 2k-3k-5=0 | | x+27=8+10 | | n/6+5=8 | | 40+5x=2+-10x | | 96-4g=28 | | 2/5=2/5x | | 5-3r=17 | | x=-81+18=11 | | X+43+(x-31)=180 | | 5u+6u-81=7u+102+65u | | x=18+81 | | X+y=1001 | | -5=-2x(-8)-21 | | -5=-2x-21 | | -5=-2y-21 | | 0=-16t^2+120t+100 | | X=(4x)+50 | | 14x3+10x+37=180 | | 5x/(5x+34)=9750/20800 | | 100−121k2=0100 | | 4-7x=7-9x | | 291-x=183 |